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Abstract

This paper presents a Bayesian algorithm to sep-
arate surface Electromyograms (EMG) into rep-
resentative motor unit action potentials. The al-
gorithm is based upon differential Variable Com-
ponent Analysis (dVCA) [1, 2] which was origi-
nally developed for Electroencephalograms. The
algorithm uses a simple forward model repre-
senting a mixture of motor unit action potentials
as seen across multiple channels. The parameters
of this model are iteratively optimized in turn for
each component. Results are presented on both
synthetic and real EMG data. The synthetic case
has additive white noise and is compared with
known components. The real EMG data was ob-
tained using a custom linear electrode array de-
signed for this study.

1 INTRODUCTION

We present a Bayesian method to perform source separa-
tion for surface Electromyograms (SEMG). In particular,
compound motor unit action potentials (CMAPs) [3] are
separated into representative motor unit action potential
(MUAP) waveforms. Our method is based upon the differ-
entially Variable Component Analysis algorithm (dVCA)
for source separation of Electroencephalograms (EEG) de-
veloped by Knuth et. al. 2004 [1, 2]. We have extensively
modified this algorithm to work with SEMG.

Electromyograms are used in the medical community to aid
in diagnosis of neuro-muscular diseases, to interface with
prosthetics, and as a means to interface with virtual devices
[4]. Voluntary limb movement occurs as a result of the
brain generating a spike train that is transmitted through
the nerve to a junction in the muscle known as the end-
plate region. This induces an ion transfer along the length
of the muscle fibers with a corresponding contraction of the
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muscles. The traveling waveform along the muscle fiber is
known as a motor unit action potential. This ion exchange
induces a current on the surface of the skin which can be
measured as a voltage via a resistive electrode. For precise
clinical applications it is often necessary to use invasive
needle electrodes to try to measure individual motor unit
action potentials. On the surface of the skin many MUAPs
are mixed together and are measured as surface EMG.

For long duration studies and applications, non-invasive
methods are less prone to the complications that can arise
with needle and device insertion. Unfortunately, noninva-
sive methods result in greater signal complexity due to mul-
tiple MUAP sources being mixed as they traverse through
skin, fat, muscle and other tissues. In this paper, we con-
centrate on a Bayesian approach to solving this mixing
problem. There has been extensive research on decompos-
ing EMG [5, 6, 7, 8] using non-Bayesian approaches.

In any standard Bayesian methodology, it is necessary to
have a forward model and a means to optimize the param-
eterization of that model based upon data observations. In
the case of EMG, we have chosen to develop a model that
describes the MUAPs and how they are mixed together.
There has been great progress made [9, 10, 11, 12, 13] in
developing physics-based forward models for EMG signal
generation as measured on the surface of the skin. Unfor-
tunately, in most of this literature, there is a gap between
the methods of decomposition and model parameterization
that could be bridged by following a Bayesian approach. In
this paper, we detail the steps that we have taken to fill this
gap with a simple mixing model.

The METHOD section describes the Bayesian decomposi-
tion algorithm, the synthetic data simulations, and the ex-
periment design for obtaining subject EMG. The results of
applying our decomposition algorithm to both the simu-
lated data and the real data are presented in the RESULTS
section.



2 METHOD

The model that we formulate for separating mixed MUAPs
is dependent upon how we acquire the data. Ideally, within
a Bayesian framework we would model every part of the
system. We would start by modeling the sources of the
potentials; how the shape of the potentials is changed by
transmission through the tissue. This would be followed
by a model of the electrodes, the amplifier, and finally of
the data acquisition card. The model we present relies on
approximations to reduce the task of modelling all of these
elements. Before going into detail on the model, it is nec-
essary to define the data collection technique.

2.1 Experimental Design

Our model is based upon the assumption that we can ob-
serve compound MUAPs along parallel fibers of a muscle
group. This assumption is supported by using a linear elec-
trode array [14] [9] as shown in Figure 1. We fabricated
this electrode array with parallel silver bars spaced 5 mm
apart. Figure 2 shows the data collected by this device on
four channels. Note that a star has been placed over one
of the action potential waveforms which is shifted between
channels proportional to the conduction velocity. The mus-
cle contraction under study is assumed to be constant. The
contraction level in this work is approximately 20 percent
of maximum voluntary contraction.

Figure 1: Linear electrode array pictured with a U.S. quar-
ter.

2.2 Model

Our model representing the mixing process for the � ��

channel as a function of time can be expressed as:
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Figure 2: EMG data from linear electrode array. Star indi-
cates moving MUAP over time between channels.
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where � is the number of sources (components), 	 the
number of firings, � represents the coupling between chan-
nels and sources, ���� is the source waveform, ��� is the
amplitude weighting. � �� represents the time delay asso-
ciated with the firing frequency of a particular source, � 
�
is the delay across channels which is proportional to the
conduction velocity, � ��� is the latency for each source and
firing representing the variability in firing.

There are several assumptions that underlye (1). We as-
sume that the electrode array is positioned parallel to the
muscle fibers and that the electrodes are evenly spaced
apart. These assumptions allows us to know that as the
dominant components travel along the muscle fibers, that
they move from channel to channel. The time it takes to
go from one channel to the next is represented by � 
� . We
also assume that the muscle contraction is of constant force
and that the sampling time is short enough to assume that
the firing rate (or time delay between firings � �� ) of any one
MUAP source is constant. The variation in the periodicity
of the firing of a single source is modelled by � ��� and is
assumed small with respect to the firing rate.

The basis of model parameter estimation lies in using
Bayes’ Theorem to maximize the probability of the model,
using the likelihood of the data and the prior probability of
the model parameters and other known information (sym-
bolized by I):
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Substituting the parameters of our model, this becomes
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where the value on the left-hand side of the equation, which
will be referred to as � , is the posterior probability of a
model describing the data. The right side represents the
product of the likelihood of data given the model and the
prior probability of the model, divided by a proportional-
ity constant dependent on the data. A uniform distribution
is assigned to the prior probabilities of each parameter, and
as a result the posterior probability� becomes directly pro-
portional to the likelihood of the data:

� � 
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Using the principle of maximum entropy, the likelihood of
the data is assigned a Gaussian distribution by introduc-
ing a new parameter �. This parameter represents the ex-
pected squared error in prediction and is assigned a Jef-
freys prior for maximum uncertainty. When the likelihood
is marginalized over all values of �, the result becomes
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where � represents the square of the residuals between the
data and our model, summed over all time points in all
channels
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To simplify calculations we maximize � by maximizing
the log of � . Using the method described by Knuth, et al.
[1, 2], the log of the posterior probability P can be written
as:
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For convenience of discussion, two commonly used expres-
sions in the process of minimizing the difference between
the data and the model, are defined below. For a given com-
ponent � in channel � at time �, � represents all firings of
the component � deduced from the value of all other pa-

rameterized components subtracted from the actual data.
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Similarly, the expression �� isolates a particular firing, ��
of the ��� component in channel� at time �, using the same
method of deduction by also subtracting away all other fir-
ings of the ��� component except for the � ��� firing.
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2.2.1 Waveshape

The Maximum A Posteriori estimate of the waveshape is
found by setting the partial derivative of the log probabil-
ity with respect to a time point q in waveshape �� to zero.
Details appear in Knuth 2004 [1].

2.2.2 Amplitude

When taking the partial derivative of the log probability
with respect to the amplitude of the � ��� firing of the ���

component, the optimal estimate for the amplitude of this
particular firing becomes
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where
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Since the model allows for varying amplitudes between dif-
ferent firings of the same component, each � �� term is de-
termined irrespective of other firings by using the deduced
single firing term, �� .

2.2.3 Firing Period

To find the optimal estimate for the firing period of the � ��

component,
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here
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where the function � is defined in (6). The function
! ���� � represents the autocorrelation across each channel,
summed across all channels for all firings of a given com-
ponent �. The � �� component is isolated by subtracting
away all firings of all other components as shown in equa-
tion to obtain ������ ��. Each channel is multiplied with
shifted versions of itself, and assuming that the data is peri-
odic across each channel, the latency shift that produces the
maximal value will be where the ��� through 	 �� channel
is closest to alignment with the ��� through �	 ����� firing
of the ��� component. This latency estimate is constrained
to be positive and greater than 2 ms because a firing period
that is significantly smaller than the time span of a single
action potential is not physiologically plausible.

2.2.4 Conduction Period

To find the optimal estimate for the conducting period of
the ��� component,
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where the function U is defined in equation 6. The func-
tion "��
� � represents the cross-correlation between con-
secutive channels, summed across all pairs of channels
for a given component �. As above, the estimate of the
��� component (with all of its firings) is obtained by sub-
tracting away all firings of all other components to ob-
tain ������ ��. As a convention, the first channel will be
considered the reference electrode from which action po-
tentials are first detected. As action potentials propagate
through the muscle fibers, each subsequent channel detects
the action potential slightly later than the previous channel.
For each pair of channels, the first channel is multiplied
with shifted versions of the second channel. Assuming that
the data is periodic across each channel, the latency shift
between channels that produces the maximal value will be
where all firings of the � �� component most nearly align
between the pair of channels. The conduction period is
constrained to positive values between zero and half of the
firing period. Since the conduction period is significantly
smaller than the firing period, we are able to use this as-
sumption.

2.2.5 Offset Latency

To find the optimal estimate for the offset latency of � ���
firing of the ��� component,
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where

#������ � �

��
���

�
���

�� ��� ����� ��$� ��� ����� ������� �

(15)

where the function �� and $� ��� ����� �� represents the
reconstruction of the � ��% firing of the ��� component, using
all other parameters of the � �� component
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The function #������ � represents the cross-correlation be-
tween the deduced single firing of the � �� component,
�� ��� ����� ��, based on the data after removing the firings
of the other components, and the estimated single firing
of the component, $� ��� ����� ��, based on the � �� com-
ponent parameters. The deduced firing is multiplied with
shifted versions of the reconstructed firing, and the latency
which produces the maximal value is taken as the estimate
of the offset latency.

2.2.6 Adjustment for Latency Degeneracy

Since ��� and ���� both represent time shifts with respect
to a single channel of data, if the estimated value for � �� is
inaccurate to begin with, � ��� values will linearly increase
in amplitude. For example, if the estimated � �� value is
smaller than the actual value, each successive firing will
deviate from its estimate by a larger value than the previous
firing with its respective estimate. For a given firing � of
a given component �, the value of the total latency due to
firing and offset is not affected, but � �� and ���� values no
longer represent the firing period and offset period. In order
to correct this, every time the � ��� is calculated, a linear
regression on the � ��� values is performed and both latency
values are adjusted accordingly. The linear regression takes
the form of ���� � &� � � � '� Using this line, ��� and ����
values are remapped so that � ��� becomes a constant value
plus or minus deviations from the regression line, ��� , and
��� accounts for this change.

�� � �� � ��� � ���� �

�� � ����� � �&�� � '� � ��� � �

�� � ����� � �&��� � �� � &� � '� � ��� �

� �� � ������ � &�� � �&� � '� � ��� �

The adjusted ��� value becomes
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and the ���� value becomes
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Figure 3: Compound motor unit action potentials with
white noise.

2.2.7 Iterations

The order in which the parameters are optimized can be
altered with varying effects, but the structure used for this
paper is as follows:

1. Identify the total number of firings within the dataset
by human observation.

2. Estimate ��� for the component using (10), (11).

3. Estimate �
� using (12), (13).

4. Estimate ���� using (14), (15).

5. Adjust ��� values if ���� values show a linear rate of
change using (16),(17).

6. Estimate the waveshape ���

7. Estimate the amplitude � of each firing using (8).

8. To parameterize another component, follow steps 1-
5, using the data from which the model of the first
component has been subtracted.

9. Iterate through steps 1-5 for both components until the
average change in waveshapes from the previous it-
eration is less than 1% or until a maximum number
of iterations has been performed, and align the peaks
of the component waveshapes, adjusting � ��� accord-
ingly.

10. For each additional source, parameterize the new
component based on the data without all other com-
ponents that are already modeled, and repeat the iter-
ation of steps 1-5 for all components until a stopping
condition in step 9 is reached.

Initialization Since the general waveshape of a MUAP
is fairly well-defined, this information is used to initiate
the waveshape. The point values in s(t) are determined
in the manner described below in the Synthetic Data sec-
tion. As mentioned earlier, the coupling matrix is set to all
ones under the assumption that all detectors receive signals
from all components equally well. All latency values, � �� ,
�
� ,and ���� are initialized as zero, and all ��� values are
one. Since the latency optimizations occur first in the iter-
ation in steps 2-4, ��� values are initialized as one. If the
��� values were zero, the reconstructed component used in
the ���� calculation would just be a straight line at zero. For
this reason, if any value of ��� becomes zero in the process
of iteration, the ��� value is set to one temporarily for the
calculations of ��� , �
� , and ���� and then set back to zero.

Estimating ��� and �
� before ���� When considering a
single component, � �� and �
� are parameters that charac-
terize the component, providing information about the fir-
ing rate and conduction velocity when the distance between
electrodes is known. The optimization of � �� and �
� in-
volve correlations of the deduced component and are not
directly dependent upon the accuracy of the parameters of
the component in question. On the other hand, � ��� “picks
up the slack” in the overall latency value and is restrained
to be a constant with slight deviations for each firing. Ef-
fectively, this constant gives information about the relative
offset between different components, and the deviation rep-
resents the time error between the model and actual data
for each firing of this particular component. � ��� involves
the cross-correlation of the deduced component and the re-
constructed component and therefore is directly dependent
upon the accuracy of the � �� component parameters.

In determining the order of this algorithm, the � ��� calcula-
tion is performed after � �� and �
� so the offset calculation
has the benefit of using the already parameterized firing and
conduction period values when reconstructing the � �� com-
ponent for cross-correlation. When the latency values are
remapped in step 5, the firing period adjustment is applied
to a ��� value that represents an estimate of the firing period
rather than an initial value with no significance.

Estimating the waveshape before amplitude Due to the
degeneracy that could occur in the model between the scal-
ing of the waveshape and the amplitude, the waveshape
is constrained to have a peak-to-peak amplitude of one to
give the � values a consistent meaning. Thus in each set
of iterations, the waveshape is estimated first and scaled
peak-to-peak. The amplitude � is parameterized after the



waveshape has been determined so that � can appropriately
compensate for the waveshape scaling in each firing of the
component in question.

Aligning waveshapes and adjusting ���� A degeneracy
also occurs in the time domain between the waveshape and
the offset latency ���� . A time shift in the component could
either be characterized as a change in waveshape or a shift
in offset latency. In order to give the offset latency val-
ues a relative meaning between different components, each
time a stopping condition is met, as in step 9, the peaks of
all component waveshapes are aligned to match the wave-
shape with the earliest peak, and each � ��� value is adjusted
accordingly. This alignment is performed after each stop-
ping condition to ensure that the algorithm has had a chance
to estimate all parameter values before shifting all wave-
shapes to an earlier time. Performing the alignment dur-
ing the iterative process runs the danger of shifting parts of
the waveshape out of the time-frame allotted for a a sin-
gle waveshape into negative time, which is invalid for this
model.

Only optimizing new component on its first iteration
When parameterizing a new component j, all previous com-
ponents have already been optimized to their stopping con-
dition. In all parameter optimization calculations (steps 1-
5), the deduced component is used, either in the form of
a single firing or an action potential train. For the first
iteration, since the ��� component has not yet been com-
pletely parameterized, using this component in calculations
for other components may throw off parameter values un-
necessarily. Therefore, for the first iteration of a new com-
ponent �, all parameters of � are optimized. For successive
iterations, all parameters are optimized for each component
in turn.

2.3 Synthetic Data

The waveshape of the synthetic data used for testing is
based on the MUAP model developed by McGill, Lateva,
and Xiao 2001 [15]. The source function,$ � (t) was created
by the sum of a scaled spike and afterpotential
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where * denotes a convolution, a and b are scaling factors,
�� is a time constant of decay, and

 ��� �
*���
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in which � and * are adjustable constants. The standard
values used were � � �+	 and k� 	+
 [15]. This source
function was used as the initial estimate of all new com-
ponent waveshapes. The model described by McGill, et
al. also details spatial and temporal weighting functions

to be convolved with the source function representing the
waveshape distortion as it travels along the muscle fibers,
as well as considerations for different lengths of muscle
fibers. These factors were not implemented for this pa-
per, but a convolution was performed using an approximate
weighting function in generating the synthetic data. For
simulation, varying levels of Gaussian noise were added as
well. The data shown in Figure 3 was generated with the
two components shown in Figure 4, that were mixed to-
gether with uncorrelated white noise with a signal to noise
ratio of 3.7. This level of noise appeared to be higher than
that normally expected in an experimental setting, and thus
is representative of a harder than normal test.
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Figure 4: Synthetic motor unit action potentials

2.4 Real Data

The subject EMG data was acquired using our electrode
array positioned over the bicep. The subject was required
to lift and hold a 5 pound weight and was only allowed to
bend at the elbow, with the elbow supported. The data was
sampled at 32 kHz. using a custom built amplifier with a
gain of 1000 and an anti-aliasing filter with a 3 kHz cutoff
frequency.

3 RESULTS

3.1 Synthetic data

The two component synthetic data was separated using the
described algorithm for 20 trials. The data consisted of
three channels with only four firings across the channels. A
typical decomposition is shown in Figure 5. This resulted
in a median RMS error of 0.0297.

3.2 Real data

The real data, that is partially shown in Figure 6, was de-
composed into two components shown in Figure 7. Since
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this was real data we do not have the actual MUAPs to
which to compare our decomposition, so instead we com-
pare this with a method in which clean MUAPs were hand-
picked and then averaged together. This averaged MUAP
waveform is depicted in Figure 8. From this, it can be seen
that there is qualitative agreement between the expected
MUAP and the first component discovered using this algo-
rithm. The second component contains multiple compound
MUAPs because only two components were specified to be
calculated.
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Figure 6: EMG data.

4 CONCLUSION

The original dVCA algorithm designed for EEG was sub-
stantially modified for the purpose of separating compound
MUAPs measured in surface EMG. This algorithm was
demonstrated on both simulated and real EMG data. The
results are encouraging for both the synthetic and real
cases. The most flexible part of this algorithm is in let-
ting the waveform ���� vary over time. Letting the wave-
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Figure 7: Both components from real data.
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Figure 8: Average waveform of hand selected MUAPs.

shape be pointwise estimated allows it to have any shape,
even shapes which are not at all physiologically plausible.
This flexibility was deliberate to determine if the algorithm
would discover waveshapes resembling expected MUAP
shapes. Indeed, we were pleased to see that the discovered
components do resemble the synthesized MUAPs. To this
end, we have obtained MUAPs from surface electrodes that
are remarkably similar to our expected waveform without
imposing any knowledge of what we were expecting to see
in terms of shape.

In order to improve the efficiency of the algorithm, the
next generation should incorporate parameterized wave-
shape constraints rather than pointwise estimates since this
is the most computationally expensive part of the algo-
rithm. Such constraints could take a number of different
forms. For example, we could work in the space of pa-
rameterizable functional bases (such as splines or Hermite
polynomials). In this paper we have shown the decom-
position into two components, but decomposing into any
number of components is possible. We do not attempt to



identify the correct number of components here, details of
how one might enable this algorithm to select the number
of components are presented in [1].

If additional experimental trials were to be considered, it
would be interesting to perform a study whereby needle
electrodes were used to record the MUAPs simultaneously
with surface electrodes. This would help to verify that the
algorithm is able to identify individual sources. This would
also give us enough data to incorporate and parameterize a
detailed convolutional model of how the detected signals
are distorted as they traverse through the skin.

It is our sincere hope that we have shown the utility of
a Bayesian approach to modeling and decomposition of
EMG data. The approach shown is a simple forward mix-
ing model. This model could be replaced with a much more
complicated physics-based model (such as the electro-
magnetic model of [11]). This would then allow for the
automated determination of the representative tissue prop-
erties via proper model parameterization at the expense of
more complex optimization.
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